
CS 59000-CAS:
Compiler & Architectural Support for
Performance, Reliability & Security

Fall 2019

Changhee Jung

About Me

•  Changhee Jung (chjung@purdue.edu)
•  Joined CS@Purdue in 2019 Fall
•  Before joining Purdue,

– Was a professor of Computer Science at VT
– Got Ph.D. at GT under supervision of Prof. Pande
– Finished 4 years of army duty in
– Before this: Master Student of ACRL at SNU

About Me
•  Basically, I’m a compiler guy

– Contributed to GCC 4.5
– Worked in ’s Compiler Optimization Team

•  But I also do research on
– Computer architecture, HW and SW interaction

•  My top conferences
– MICRO, ICSE, ASPLOS, HPDC, SC, PLDI
 * Recent papers appeared in the highlighted ones.

About Me

•  My research has been supported by

“Compiler and Architectural Techniques for Soft Error Resilience”

“CAREER: Rethinking HPC Resilience in the Exascale Era”

‘BIG MAC’ where My Research Began	

‘BIG MAC’ where My Research Began	

•  A supercomputer out of
1,100 Apple Power Mac G5
built in 2003 at Virginia
Tech.

•  Big Mac crashed too many
times

•  Apps never finish before
the crash

•  Sometimes not even
boot

•  Soft errors corrupted the
non-ECC memory.

‘BIG MAC’ where My Research Began	

•  A supercomputer out of
1,100 Apple Power Mac G5
built in 2003 at Virginia
Tech.

•  Big Mac crashed too many
times

•  Apps never finish before
the crash

•  Sometimes not even
boot

•  Soft errors corrupted the
non-ECC memory.

§  Transient fault mainly
caused by high-energy
cosmic particles.

§ Result in random bit flip.

Application Crash

Silent Data
Corruption

 Deadlock

 …

My Research: Soft Error Resilience

More Stories …	

Bit-flip in a data structure of cruise controller of
 Toyota Camry killed a driver!

Past

Present

Future

One fault per DAY
per 100 chips

Aggressive voltage
scaling
(near-threshold
computing)

One fault per DAY per chip
My Research: Soft Error Resilience

Triple-Modular Redundancy (TMR) 	

•  Replicate 3 identical modules and use
majority voting for the output

A

A’

A’’

Input Vote
3X HW overhead!!!

x = 1
y = x

 A region of code is idempotent iff it can
be re-executed multiple times and still
preserves the same, correct result.

Output: x = y = 1

∞

Idempotent Property	

x = 1
y = x
…

Ø Recovery by rollback and re-
execution of the faulty region

Expected Output: x = y = 1

Idempotent Recovery	

y = 0

Unexpected output: x = 1, y = 0

More to Come

•  I have several resilience research
problems (not just soft error resilience),
you can dive into
–  If you pick one of them and get it done

correctly, there would be a high chance for
you to publish a research paper!

About You

•  Your name and your advisor (if you have)

•  Your background
–  Your affiliation/program enrolled
–  Industry/Internship experience (if you have)

•  Research interests (past and current)

–  If you’ve published papers, please give an elevator
speech

Course Facts
•  Class meeting time

– 4:30 – 5:45pm on Mon/Wed at LWSN 1106
•  Office hours: by appointment

– Please send me an email first
•  Course site

– We’ll use Blackboard and Google Sheets as
means of primary communication

•  Honor coded
– All work is conducted under Purdue University

Academic Integrity (cs.purdue.edu/homes/
chjung/integrity)

Force-Add

•  I expect that everybody who is interested
in taking this class will be able to do so

•  Send an email to chjung@purdue.edu with
your name and the last four digits of PUID

•  Typical seminar class with an emphasis on
preparing graduate students for systems research
on compilers and computer architecture support
for performance, reliability, and security.

•  Our goals
– To be familiar with the state-of-the-art of compiler

and computer architecture related to the topics
–  To understand current results in one or more areas of

optimizing compilers, microarchitectures, and their
interaction related to the topics

– To identify new ideas for advancing the state-of-the-
arts

About This Class

•  We’ll read research papers related to advanced
topics in compilers and computer architecture
support for performance, reliability, and security.

•  Possible compiler topics
– Program analysis, program transformation, and the

interaction between the compiler and the rest of the
system, …

•  Possible architecture topics
– Processor micro-architecture, memory hierarchy,

multi-threading, and the impact of emerging memory
technologies …

About This Class

Background You Should Have
•  Programming

–  Good C++ programmer (essential), Linux, gcc, VI/Emacs
–  Debugging experience – hard to debug with printf’s alone – gdb!

•  Prerequisite 1: compilers
–  Basic backend stuff (code generation), e.g., basic block, CFG, etc.
–  Frontend is not very relevant here

•  Prerequisite 2 : computer architecture
–  Undergrad computer architecture course is good enough
–  Basics – caches, pipelining, functional units, registers, virtual

memory, branches, multiple cores, assembly code

Reading Material
•  No required text: most of the reading will be

assigned papers.
•  However, If you wish to brush up on your

basics, we recommend the following textbooks
as background:
–  “Advanced Compiler Design & Implementation” by Muchnick”
–  “Computer Architecture: A Quantitative Approach” by Patterson and

Hennessy, 4th edition
–  “Modern Processor Design: Fundamentals of Superscalar Processors”

by Shen and Lipasti

Course Format

•  Paper reading and discussions

•  Paper evaluations

•  Student presentations

•  Research project

No Exam

Reading and Discussion

•  You’ll present research papers along the way
•  Everybody reads assigned papers before

class
•  Everybody should submit a hard copy of your

critique
– To prove you’ve read the paper.
– To enable you to contribute to discussion

•  No late submissions will be accepted
– Contact me for exceptions in severe

circumstances only

Paper Evaluation Form

•  What problem does the paper attack? How does
it relate to and improve upon previous work in its
domain?

•  What are the key contributions of the paper?
•  Briefly describe how the paper’s experimental

methodology supports the paper’s conclusions.
•  Write down one question you plan to bring up in

the discussion.
•  Review form will be provided soon in Blackboard

Your Presentation (2 parts)

•  First, present research as if it were your own
–  Giving background (very desired for your friend in

class)

•  Then, change roles:
–  Evaluate research from your perspective: add

insights, criticism, etc.

•  Help lead subsequent discussion

Presentation Grading

•  Shooting for an hour
– 45m talk + 15 min Q&A and discussion

•  Graded on Comprehension, not Quality

–  To help you in life (and make this semester less
painful for everyone)

•  Show up for class and ask good questions!

Preparing Your Presentation

•  Every student may meet with instructor to discuss

slides.
–  It’s your responsibility to schedule a suitable time, early

enough such that there’s still time for revisions to your
slides

–  You must have your slides ready by that time.

Project: The Most Important

•  Design & implement an “interesting”
compilation or architectural technique and
demonstrate its usefulness for performance,
reliability, or security using research
compilers or architecture simulators

•  Topic/scope/work
–  Individual project
–  You need to pick the topics (but I have to agree)
–  You have to read background material, plan & design, and implement

•  Deliverables
–  Working implementation and final presentation
–  Project report: 6 pages in ACM SIGPLAN template

Types of Projects
•  New research idea

– Design & implement small idea, see how it works
•  Extend existing idea (most popular)

– Take an existing paper, implement their technique
– Then, extend it to do something interesting;

Generalize strategy, make more efficient/effective
•  Implementation

– Take existing idea, create quality implementation in
LLVM compiler or Gem5 architecture simulator

– Get your code released into the community

Types of Projects

•  Workload characterization and analysis
– Evaluate existing compilation or architectural

techniques with emerging applications in terms
of performance/power/reliability, …

•  Ex> Evaluate the impact of feed back directed
optimization for IoT benchmark applications across
different computer architectures

•  Above example is publishable!

Topic Areas (You’re Welcome to Propose Others)

•  Repurposing commodity
computer architecture feature
–  Transactional memory (Intel TSX)
–  Memory protection (Intel MPX)
–  Processor trace (Intel PT)
–  Performance Monitor (Intel PEBS)

•  Memory system performance
–  Instruction prefetching
–  Data prefetching
–  Helper thread prefetching
–  Use of scratchpad memories

•  Software Resilience
–  Detect program bugs
–  SW fault tolerance
–  Offer crash consistency
–  Enhance security (or reduce

overhead)

•  Performance Characterization
–  Real analysis of FDO on

emerging workloads
–  Evaluation of pointer analysis

impacts on compiler optimization
performance

Course Grading
•  Components

– 5% Class Participation
– 5% Paper evaluation
– 30% Research paper presentation
– 20% Final project presentation
– 40% Final project report

•  A >= 93%, A- >= 90%, B+ >= 87%, B >=
83%, B- >= 80%, C+ >= 77%, C >= 73%,
C- >= 70%, D+ >= 67%, D >= 63%, D- >=
60%, F < 60% (I may curve)

Course Schedule and Papers
to be Discussed

•  The list of the papers and the dates of the
paper discussion are available in the
Google Sheets
https://docs.google.com/spreadsheets/d/
1k60xL7eM23OMWg3Xus7xeCJXdh5D3M4LsR
WQDZuVsSA/edit?usp=sharing

